405. The Two-component Salt Mixtures of Lead Nitrate with Thallium or Silver Nitrate.

By H. M. GLASS, K. LAYBOURN, and W. M. MADGIN.

FREEZING-POINT data for the binary systems $Pb(NO_3)_2$ -TlNO₃ and $Pb(NO_3)_2$ -AgNO₃ have not hitherto been investigated.

Pure $AgNO_3$ was recryst. from HNO_3 , fused, and ground to a fine powder. $TINO_3$, prep. by dissolving Tl_2CO_3 in HNO_3 , was recryst. thrice. The purification of $Pb(NO_3)_2$ and the methods used in determining f. p.'s are described in an earlier paper (this vol., p. 874).

TABLE I.

Freezing points of mixtures containing $Pb(NO_3)_2$.

[Compositions are expressed as % of Pb(NO₃)₂ by wt.]

			_				
Series 1.	Pb(N0	O ₃) ₂ with Ag	gNO₃.	Series II.	Pb(N	10 ₃) ₂ with T	lNO ₃ .
$Pb(NO_3)_2$,		$Pb(NO_3)_2$,		$Pb(NO_3)_2$,		$Pb(NO_3)_2$,	
%.	F. p.	%.	F . р.	%.	F. p.	%.	F. p.
0.0	209.5°	12.0	230.9°	0.0	$206 \cdot 2^{\circ}$	16.0	185·5°
$2 \cdot 5$	208.2	15.0	249.8	2.5	$203 \cdot 1$	17.0	192.6
5.0	$205 \cdot 4$	20.0	278.7	5.0	197.8	20.0	214.2
7.5	$201 \cdot 2$	25.0	$302 \cdot 2$	7.5	192.0	25.0	$247 \cdot 1$
$(E_1) 8.5$	200.2	30.0	$323 \cdot 6$	10.0	186.0	30.0	279.1
9.0	206.2	35.0	342.5	12.0	181.3	35.0	306.9
10.0	215.7	40·0	359.3	13.0	179.1	40.0	335.6
11.0	223.3			14.0	176.9	45.0	$357 \cdot 1$
				(E ₂) 14·7	175.5	50.0	378.0
				15.0	177.0		

 E_1 and E_2 = Eutectic compositions.

The results (Table I and Fig. 1) show that each system is of the simple eutectic type within the limits of comp. indicated. Decomp. of $Pb(NO_3)_2$

limits investigation to mixtures containing 50% TlNO₃ (f. p. $378\cdot0^{\circ}$) and 60% AgNO₃ (f. p. $359\cdot3^{\circ}$) in the respective systems. The existence of limiting mixtures in these two systems is analogous to the behaviour of Pb(NO₃)₂ in KNO₃ or NaNO₃ (*loc. cit.*), and the relation between decomp. temp. and comp.

FIG. 1.

Freezing point-composition diagrams for the systems $Pb(NO_3)_2-AgNO_3$ and $Pb(NO_3)_2-T!NO_3$, with a decomposition temperature-composition diagram for the system $Pb(NO_3)_2-T!NO_3$.

has been found to be similar in type in the system $TINO_3-Pb(NO_3)_2$ to that in the systems $Pb(NO_3)_2-KNO_3$ and $Pb(NO_3)_2-NaNO_3$.

The rise in decomp. temp. with decrease of $Pb(NO_3)_2$ content is shown in Fig. 1 (AB) and the intersection of BA with the f. p. curve EA defines the limiting mixture. The deflexion of AB in the neighbourhood of B is caused

by the decomp. of TlNO₃, which occurs at 380° with the pure salt (cf. Thomas, *Compt. rend.*, 1904, **138**, 1697, who reports vigorous decomp. at 450° , with evolution of nitrous fumes).

ARMSTRONG COLLEGE, UNIVERSITY OF DURHAM, NEWCASTLE-UPON-TYNE. [Received, September 30th, 1932.]